Disjunctive Programming: Properties of the Convex Hull of Feasible Points
نویسنده
چکیده
In this paper we characterize the convex hull of feasible points for a disjunctive program, a class of problems which subsumes pure and mixed integer programs and many other nonconvex programming problems. Two representations are given for the convex hull of feasible points. each of which provides linear programming equivalents of the disjunctive program. The first one involves a number of new variables proportional to the number of terms in the disjunctive normal form of the logical constraints; the second one involves only the original variables and the facets of the convex hull. Among other results, we give necessary and sufficient conditions for an inequality to define a facet of the convex hull of feasible points. For the class of disjunctive programs that we call facial, we establish a property which makes it possible to obtain the convex hull of points satisfying n disjunctions, in a sequence of it steps, where each step generates the convex hull of points satisfying one disjunction only. 1998 Published by Elsevier Science B.V. All rights reserved. Kqwords: Lift-and-project; Sequential convexification; Facial disjunctive programs; Reverse polars
منابع مشابه
Convex programming for disjunctive convex optimization
Given a nite number of closed convex sets whose algebraic representation is known, we study the problem of optimizing a convex function over the closure of the convex hull of the union of these sets. We derive an algebraic characterization of the feasible region in a higher-dimensional space and propose a solution procedure akin to the interior-point approach for convex programming.
متن کاملDisjunctive programming and a hierarchy of relaxations for discrete optimization problems
We discuss a new conceptual framework for the convexification of discrete optimization problems, and a general technique for obtaining approximations to the convex hull of the feasible set. The concepts come from disjunctive programming and the key tool is a description of the convex hull of a union of polyhedra in terms of a higherdimensional polyhedron. Although this description was known for...
متن کاملA Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems
This paper is concerned with the generation of tight equivalent representations for mixedinteger zero-one programming problems. For the linear case, we propose a technique which first converts the problem into a nonlinear, polynomial mixed-integer zero-one problem by multiplying the constraints with some suitable d-degree polynomial factors involving the n binary variables, for any given d E (0...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملDisjunctive Conic Cuts for Mixed Integer Second Order Cone Optimization
We investigate the derivation of disjunctive conic cuts for mixed integer second order cone optimization (MISOCO). These conic cuts characterize the convex hull of the intersection of a disjunctive set and the feasible set of a MISOCO problem. We present a full characterization of these inequalities when the disjunctive set considered is defined by parallel hyperplanes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 89 شماره
صفحات -
تاریخ انتشار 1998